Cells (Mar 2025)
Adipose Tissue Stem Cells (ASCs) and ASC-Derived Extracellular Vesicles Prevent the Development of Experimental Peritoneal Fibrosis
Abstract
Cell therapy utilizing mesenchymal stromal cells (MSCs) through paracrine mechanisms holds promise for regenerative purposes. Peritoneal fibrosis (PF) is a significant complication of peritoneal dialysis. Various strategies have been proposed to protect the peritoneal membrane (PM). This study explores the effectiveness of adipose-tissue-derived stem cells (ASCs) and extracellular vesicles (EVs) at mitigating PF using a rat model of PF induced by chlorhexidine gluconate. ASC and EV treatments effectively prevented an increase in the thickness of the PM and diminished the number of myofibroblasts, fibronectin expression, collagen III expression, and PF-related factors such as TGF-β and FSP-1. Smad3 gene expression decreased in the treatment groups, whereas Smad7 gene expression increased in treated animals. In addition, ASC and EV injections showed potent anti-inflammatory effects. Glucose transport through the PM remained unaffected in relation to the PF group; both treatments promoted an increase in ultrafiltration (UF) capacity. The PF+EVs treated group showed the highest increase in UF capacity. Another critical aspect of ASC and EV treatments was their impact on neoangiogenesis in the PM which is vital for UF capacity. Although the treated groups displayed a significant decrease in VEGF expression in the PM, peritoneal function remained effective. In conclusion, within the experimental PF model, both ASC and EV treatments demonstrated anti-inflammatory effects and comparably hindered the progression of PF. The EV treatment exhibited superior preservation of peritoneal function, along with enhanced UF capacity. These findings suggest the potential of ASCs and EVs as novel therapeutic approaches to prevent the development of PF associated with peritoneal dialysis.
Keywords