Remote Sensing (Feb 2023)

SMNet: Symmetric Multi-Task Network for Semantic Change Detection in Remote Sensing Images Based on CNN and Transformer

  • Yiting Niu,
  • Haitao Guo,
  • Jun Lu,
  • Lei Ding,
  • Donghang Yu

DOI
https://doi.org/10.3390/rs15040949
Journal volume & issue
Vol. 15, no. 4
p. 949

Abstract

Read online

Deep learning has achieved great success in remote sensing image change detection (CD). However, most methods focus only on the changed regions of images and cannot accurately identify their detailed semantic categories. In addition, most CD methods using convolutional neural networks (CNN) have difficulty capturing sufficient global information from images. To address the above issues, we propose a novel symmetric multi-task network (SMNet) that integrates global and local information for semantic change detection (SCD) in this paper. Specifically, we employ a hybrid unit consisting of pre-activated residual blocks (PR) and transformation blocks (TB) to construct the (PRTB) backbone, which obtains more abundant semantic features with local and global information from bi-temporal images. To accurately capture fine-grained changes, the multi-content fusion module (MCFM) is introduced, which effectively enhances change features by distinguishing foreground and background information in complex scenes. In the meantime, the multi-task prediction branches are adopted, and the multi-task loss function is used to jointly supervise model training to improve the performance of the network. Extensive experimental results on the challenging SECOND and Landsat-SCD datasets, demonstrate that our SMNet obtains 71.95% and 85.65% at mean Intersection over Union (mIoU), respectively. In addition, the proposed SMNet achieves 20.29% and 51.14% at Separated Kappa coefficient (Sek) on the SECOND and Landsat-SCD datasets, respectively. All of the above proves the effectiveness and superiority of the proposed method.

Keywords