Journal of Innovative Optical Health Sciences (May 2025)
Engineering bright J-aggregates through manipulation of electron acceptor for in vivo NIR-II fluorescence imaging
Abstract
Fluorophores emitting in the second near-infrared window (NIR-II, 900–1700[Formula: see text]nm) allow for high-resolution deep-tissue bioimaging owing to minimal tissue scattering. Although J-aggregation offers a promising approach to developing long-wavelength emitters, the scarcity of J-type backbones and reliable design principles limits their application in biological imaging. Here, we introduce a strategy for engineering high-brightness NIR-II J-aggregated fluorophores by incorporating electron-withdrawing substituents into a fused-ring backbone. These substituents modulate the electrostatic potential (ESP) distribution across the conjugated backbone, reducing both electrostatic repulsion and intermolecular distance, which promotes ordered J-aggregation. As a result, Y8 aggregate (Y8 nanoparticles) exhibits an outstanding fluorescence quantum yield of up to 12.9% and strong near-infrared absorption in aqueous solution for high-performance NIR-II fluorescence imaging in vivo. This work not only presents a novel J-type backbone but also advances the understanding of the structure–property relationship critical to designing NIR-II J-aggregates.
Keywords