Materials (Jul 2018)

Microstructures and Compressive Properties of Al Matrix Composites Reinforced with Bimodal Hybrid In-Situ Nano-/Micro-Sized TiC Particles

  • Feng Qiu,
  • Hao-Tian Tong,
  • Yu-Yang Gao,
  • Qian Zou,
  • Bai-Xin Dong,
  • Qiang Li,
  • Jian-Ge Chu,
  • Fang Chang,
  • Shi-Li Shu,
  • Qi-Chuan Jiang

DOI
https://doi.org/10.3390/ma11081284
Journal volume & issue
Vol. 11, no. 8
p. 1284

Abstract

Read online

Bimodal hybrid in-situ nano-/micro-size TiC/Al composites were prepared with combustion synthesis of Al-Ti-C system and hot press consolidation. Attempt was made to obtain in-situ bimodal-size TiC particle reinforced dense Al matrix composites by using different carbon sources in the reaction process of hot pressing forming. Microstructure showed that the obtained composites exhibited reasonable bimodal-sized TiC distribution in the matrix and low porosity. With the increasing of the carbon nano tube (CNT) content from 0 to 100 wt. %, the average size of the TiC particles decreases and the compressive strength of the composite increase; while the fracture strain increases first and then decreases. The compressive properties of the bimodal-sized TiC/Al composites, especially the bimodal-sized composite synthesized by Al-Ti-C with 50 wt. % CNTs as carbon source, were improved compared with the composites reinforced with single sized TiC. The strengthening mechanism of the in-situ bimodal-sized particle reinforced aluminum matrix composites was revealed.

Keywords