A Friedmann–Lemaitre–Robertson–Walker space–time model with all curvatures k=0, ±1 is explored in f(R,T) gravity, where R is the Ricci scalar, and T is the trace of the energy–momentum tensor. The solutions are obtained via the parametrization of the scale factor that leads to a model transiting from a decelerated universe to an accelerating one. The physical features of the model are discussed and analyzed in detail. The study shows that f(R,T) gravity can be a good alternative to the hypothetical candidates of dark energy to describe the present accelerating expansion of the universe.