The Astrophysical Journal (Jan 2024)
Rovibrational Transitions in HCl due to Collisions with H2: Spin-free and Hyperfine-resolved Transitions
Abstract
Hydrogen chloride (HCl) is a key repository of chlorine in the interstellar medium. Accurate determinations of its abundance are critical to assessing the chlorine elemental abundance and constraining stellar nucleosynthesis models. To aid in modeling recent and future observations of HCl rovibrational spectra, we present cross sections and rate coefficients for collisions between HCl and molecular hydrogen. Transitions between rovibrational states of HCl are considered for temperatures ranging from 10 to 3000 K. Cross sections are computed using a full dimensional quantum close-coupling (CC) method and a reduced dimensionality coupled-states (CS) approach. The CS results, benchmarked against the CC results, are used with a recoupling approach to calculate hyperfine-resolved rate coefficients for rovibrational transitions of HCl induced by H _2 . The rate coefficients will allow for a better determination of the HCl abundance in the interstellar medium and an improved understanding of interstellar chlorine chemistry. We demonstrate the utility of the new rate coefficients in a nonthermodynamic equilibrium radiative transfer model applied to observations of HCl rovibrational transitions in a circumstellar shell.
Keywords