Materials (Feb 2023)

Evaluation of an Imine-Linked Polymer Organic Framework for Storage and Release of H<sub>2</sub>S and NO

  • Sílvia Carvalho,
  • João Pires,
  • Cristina Moiteiro,
  • Moisés L. Pinto

DOI
https://doi.org/10.3390/ma16041655
Journal volume & issue
Vol. 16, no. 4
p. 1655

Abstract

Read online

Hydrogen sulfide (H2S) and nitric oxide (NO) are especially known as toxic and polluting gases, yet they are also endogenously produced and play key roles in numerous biological processes. These two opposing aspects of the gases highlight the need for new types of materials to be developed in addition to the most common materials such as activated carbons and zeolites. Herein, a new imine-linked polymer organic framework was obtained using the inexpensive and easy-to-access reagents isophthalaldehyde and 2,4,6-triaminopyrimidine in good yield (64%) through the simple and catalyst-free Schiff-base reaction. The polymeric material has microporosity, an ABET surface area of 51 m2/g, and temperature stability up to 300 °C. The obtained 2,4,6-triaminopyrimidine imine-linked polymer organic material has a higher capacity to adsorb NO (1.6 mmol/g) than H2S (0.97 mmol/g). Release studies in aqueous solution showed that H2S has a faster release (3 h) from the material than NO, for which a steady release was observed for at least 5 h. This result is the first evaluation of the possibility of an imine-linked polymer organic framework being used in the therapeutic release of NO or H2S.

Keywords