Earth and Space Science (Jul 2024)
Evaluating TROPOMI δD Column Retrievals With In Situ Airborne Field Campaign Measurements Using Expanded Collocation Criterion
Abstract
Abstract Satellite observations of column‐averaged water isotopes are relatively new retrieval products that are in need of further in situ evaluation. Such evaluation studies are generally difficult to perform due to the wide mismatch in temporal and spatial scales between the satellite observations based on instantaneous pixel averages during an overpass and airborne in situ measurements ranging up to several hours over a km‐scale. In addition, topography, weather conditions and in particular cloudiness impose severe constraints on an exact collocation between satellite and airborne in situ measurement platforms. Here we present a new method that allows a comparison between in situ measurements and satellite observations of δD on a broader statistical basis. We use regional isotope‐enabled model simulations as intermediate information to identify the area for best comparisons. Applying our methodology to TROPOMI total column δD retrievals for the L‐WAIVE campaign in Annecy, France, during June 2019 increases the number of satellite pixels for comparison despite widespread cloudiness on average by a factor of 20. In addition, the comparison of simulated and observed δD revealed a dependency of the satellite evaluation on the structure of the middle and upper troposphere. We conclude that our method provides a more robust statistic basis for in situ evaluation of δD satellite retrievals. The method will thus be useful in planning and executing forthcoming validation and evaluation campaigns, and can potentially be used for the evaluation of other satellite products.
Keywords