PLoS ONE (Jan 2014)
An experimental study of hafting adhesives and the implications for compound tool technology.
Abstract
Experimental studies of hafting adhesives and modifications to compound tool components can demonstrate the extent to which human ancestors understood and exploited material properties only formally defined by science within the last century. Discoveries of Stone Age hafting adhesives at archaeological sites in Europe, the Middle East, and Africa have spurred experiments that sought to replicate or create models of such adhesives. Most of these studies, however, have been actualistic in design, focusing on replicating ancient applications of adhesive technology. In contrast, this study tested several glues based on Acacia resin within a materials science framework to better understand the effect of each adhesive ingredient on compound tool durability. Using an overlap joint as a model for a compound tool, adhesives formulated with loading agents from a range of particle sizes and mineral compositions were tested for toughness on smooth and rough substrates. Our results indicated that overlap joint toughness is significantly increased by using a roughened joint surface. Contrary to some previous studies, there was no evidence that particle size diversity in a loading agent improved adhesive effectiveness. Generally, glues containing quartz or ochre loading agents in the silt and clay-sized particle class yielded the toughest overlap joints, with the effect of particle size found to be more significant for rough rather than smooth substrate joints. Additionally, no particular ochre mineral or mineral mixture was found to be a clearly superior loading agent. These two points taken together suggest that Paleolithic use of ochre-loaded adhesives and the criteria used to select ochres for this purpose may have been mediated by visual and symbolic considerations rather than purely functional concerns.