Scientific Reports (Jul 2023)
Polyhydroxy butyrate biosynthesis by Azotobacter chroococcum MTCC 3858 through groundnut shell as lignocellulosic feedstock using resource surface methodology
Abstract
Abstract This work appraises the prospect of utilising groundnut shell hydrolysate as a feedstock used for PHB biosynthesis by Azotobacter chroococcum MTCC 3853 under SMF conditions. Sugar reduction: untreated and pretreated 20% H2SO4 (39.46 g/l and 62.96 g/l, respectively), untreated and enzymatic hydrolysis (142.35 mg/g and 568.94 mg/g). The RSM-CCD optimization method was used to generate augment PHB biosynthesis from groundnut shell hydrolysate (30 g/l), ammonium sulphate (1.5 g/l), ammonium chloride (1.5 g/l), peptone (1.5 g/l), pH 7, 30 °C, and a 48 h incubation time. The most convincing factors (p < 0.0001), coefficient R2 values of biomass 0.9110 and PHB yield 0.9261, PHB production, highest biomass (17.23 g/l), PHB Yield(11.46 g/l), and 66.51 (wt% DCW) values were recorded. The control (untreated GN) PHB yield value of 2.86 g/l increased up to fourfold in pretreated GN. TGA results in a melting range in the peak perceived at 270.55 °C and a DSC peak range of 172.17 °C, correspondingly. According to the results, it furnishes an efficient agricultural waste executive approach by diminishing the production expenditure. It reinforces the production of PHB, thereby shrinking our reliance on fossil fuel-based plastics.