Neurymenolide A, a Novel Mitotic Spindle Poison from the New Caledonian Rhodophyta <i>Phacelocarpus neurymenioides</i>
Sofia-Eléna Motuhi,
Omid Feizbakhsh,
Béatrice Foll-Josselin,
Blandine Baratte,
Claire Delehouzé,
Arnaud Cousseau,
Xavier Fant,
Jeannette Chloë Bulinski,
Claude Elisabeth Payri,
Sandrine Ruchaud,
Mohamed Mehiri,
Stéphane Bach
Affiliations
Sofia-Eléna Motuhi
UMR ENTROPIE (IRD—Université de La Réunion—CNRS), Laboratoire d’Excellence Labex-CORAIL, Institut de Recherche pour le Développement (IRD), BP A5, 98848 Nouméa CEDEX, New Caledonia, France
Omid Feizbakhsh
Sorbonne Université, CNRS, USR 3151, Protein Phosphorylation & Human Diseases, Station Biologique de Roscoff, CS 90074, 29688 Roscoff CEDEX, France
Béatrice Foll-Josselin
Sorbonne Université, CNRS, USR 3151, Protein Phosphorylation & Human Diseases, Station Biologique de Roscoff, CS 90074, 29688 Roscoff CEDEX, France
Blandine Baratte
Sorbonne Université, CNRS, USR 3151, Protein Phosphorylation & Human Diseases, Station Biologique de Roscoff, CS 90074, 29688 Roscoff CEDEX, France
Claire Delehouzé
Sorbonne Université, CNRS, USR 3151, Protein Phosphorylation & Human Diseases, Station Biologique de Roscoff, CS 90074, 29688 Roscoff CEDEX, France
Arnaud Cousseau
Sorbonne Université, CNRS, USR 3151, Protein Phosphorylation & Human Diseases, Station Biologique de Roscoff, CS 90074, 29688 Roscoff CEDEX, France
Xavier Fant
Sorbonne Université, CNRS, USR 3151, Protein Phosphorylation & Human Diseases, Station Biologique de Roscoff, CS 90074, 29688 Roscoff CEDEX, France
Jeannette Chloë Bulinski
Sorbonne Université, CNRS, USR 3151, Protein Phosphorylation & Human Diseases, Station Biologique de Roscoff, CS 90074, 29688 Roscoff CEDEX, France
Claude Elisabeth Payri
UMR ENTROPIE (IRD—Université de La Réunion—CNRS), Laboratoire d’Excellence Labex-CORAIL, Institut de Recherche pour le Développement (IRD), BP A5, 98848 Nouméa CEDEX, New Caledonia, France
Sandrine Ruchaud
Sorbonne Université, CNRS, USR 3151, Protein Phosphorylation & Human Diseases, Station Biologique de Roscoff, CS 90074, 29688 Roscoff CEDEX, France
Mohamed Mehiri
UMR 7272 CNRS, Marine Natural Products Team, Nice Institute of Chemistry (ICN), University Nice Sophia Antipolis, Parc Valrose, 02 F-06108 Nice CEDEX, France
Stéphane Bach
Sorbonne Université, CNRS, USR 3151, Protein Phosphorylation & Human Diseases, Station Biologique de Roscoff, CS 90074, 29688 Roscoff CEDEX, France
The marine α-pyrone macrolide neurymenolide A was previously isolated from the Fijian red macroalga, Neurymenia fraxinifolia, and characterized as an antibacterial agent against antibiotic-resistant strains that also exhibited moderate cytotoxicity in vitro against cancer cell lines. This compound was also shown to exhibit allelopathic effects on Scleractinian corals. However, to date no mechanism of action has been described in the literature. The present study showed, for the first time, the isolation of neurymenolide A from the New Caledonian Rhodophyta, Phacelocarpus neurymenioides. We confirmed the compound’s moderate cytotoxicity in vitro against several human cell lines, including solid and hematological malignancies. Furthermore, we combined fluorescence microscopy and flow cytometry to demonstrate that treatment of U-2 OS osteosarcoma human cells with neurymenolide A could block cell division in prometaphase by inhibiting the correct formation of the mitotic spindle, which induced a mitotic catastrophe that led to necrosis and apoptosis. Absolute configuration of the stereogenic center C-17 of neurymenolide A was deduced by comparison of the experimental and theoretical circular dichroism spectra. Since the total synthesis of this compound has already been described, our findings open new avenues in cancer treatment for this class of marine molecules, including a new source for the natural product.