Highly Efficient Ru-Based Catalysts for Lactic Acid Conversion to Alanine
Iunia Podolean,
Mara Dogaru,
Nicolae Cristian Guzo,
Oana Adriana Petcuta,
Elisabeth E. Jacobsen,
Adela Nicolaev,
Bogdan Cojocaru,
Madalina Tudorache,
Vasile I. Parvulescu,
Simona M. Coman
Affiliations
Iunia Podolean
Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av., 030018 Bucharest, Romania
Mara Dogaru
Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av., 030018 Bucharest, Romania
Nicolae Cristian Guzo
Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av., 030018 Bucharest, Romania
Oana Adriana Petcuta
Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av., 030018 Bucharest, Romania
Elisabeth E. Jacobsen
Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
Adela Nicolaev
National Institute of Materials Physics, Atomistilor 405b, 077125 Magurele, Ilfov, Romania
Bogdan Cojocaru
Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av., 030018 Bucharest, Romania
Madalina Tudorache
Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av., 030018 Bucharest, Romania
Vasile I. Parvulescu
Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av., 030018 Bucharest, Romania
Simona M. Coman
Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av., 030018 Bucharest, Romania
The primary objective of this research was to develop efficient solid catalysts that can directly convert the lactic acid (LA) obtained from lignocellulosic biomass into alanine (AL) through a reductive amination process. To achieve this, various catalysts based on ruthenium were synthesized using different carriers such as multi-walled carbon nanotubes (MWCNTs), beta-zeolite, and magnetic nanoparticles (MNPs). Among these catalysts, Ru/MNP demonstrated a remarkable yield of 74.0% for alanine at a temperature of 200 °C. This yield was found to be superior not only to the Ru/CNT (55.7%) and Ru/BEA (6.6%) catalysts but also to most of the previously reported catalysts. The characterization of the catalysts and their catalytic results revealed that metallic ruthenium nanoparticles, which were highly dispersed on the external surface of the magnetic carrier, significantly enhanced the catalyst’s ability for dehydrogenation. Additionally, the -NH2 basic sites on the catalyst further facilitated the formation of alanine by promoting the adsorption of acidic reactants. Furthermore, the catalyst could be easily separated using an external magnetic field and exhibited the potential for multiple reuses without any significant loss in its catalytic performance. These practical advantages further enhance its appeal for applications in the reductive amination of lactic acid to alanine.