Plants (Jan 2023)

Extracts from <i>Chlorella vulgaris</i> Protect Mesenchymal Stromal Cells from Oxidative Stress Induced by Hydrogen Peroxide

  • Maria G. Savvidou,
  • Ioulia Georgiopoulou,
  • Nasia Antoniou,
  • Soultana Tzima,
  • Maria Kontou,
  • Vasiliki Louli,
  • Chronis Fatouros,
  • Kostis Magoulas,
  • Fragiskos N. Kolisis

DOI
https://doi.org/10.3390/plants12020361
Journal volume & issue
Vol. 12, no. 2
p. 361

Abstract

Read online

Microalgae as unicellular eukaryotic organisms demonstrate several advantages for biotechnological and biological applications. Natural derived microalgae products demand has increased in food, cosmetic and nutraceutical applications lately. The natural antioxidants have been used for attenuation of mitochondrial cell damage caused by oxidative stress. This study evaluates the in vitro protective effect of Chlorella vulgaris bioactive extracts against oxidative stress in human mesenchymal stromal/stem cells (MSCs). The classical solid-liquid and the supercritical extraction, using biomass of commercially available and laboratory cultivated C. vulgaris, are employed. Oxidative stress induced by 300 μM H2O2 reduces cell viability of MSCs. The addition of C. vulgaris extracts, with increased protein content compared to carbohydrates, to H2O2 treated MSCs counteracted the oxidative stress, reducing reactive oxygen species levels without affecting MSC proliferation. The supercritical extraction was the most efficient extraction method for carotenoids resulting in enhanced antioxidant activity. Pre-treatment of MSCs with C. vulgaris extracts mitigates the oxidative damage ensued by H2O2. Initial proteomic analysis of secretome from licensed (TNFα-activated) MSCs treated with algal extracts reveals a signature of differentially regulated proteins that fall into clinically relevant pathways such as inflammatory signaling. The enhanced antioxidative and possibly anti-inflammatory capacity could be explored in the context of future cell therapies.

Keywords