Applied Sciences (Oct 2024)

A Simulation Study of FRP-PCM Reinforcement for Tunnel Linings with Void Defects

  • Qiwei Lin,
  • Yujing Jiang,
  • Jing Wang,
  • Satoshi Sugimoto

DOI
https://doi.org/10.3390/app14209440
Journal volume & issue
Vol. 14, no. 20
p. 9440

Abstract

Read online

Voids behind tunnel linings can be formed either during or after the construction phase, occurring due to inadequate backfilling, substandard workmanship, water erosion, or gravitational forces. Investigations into numerous tunnels in which collapses occurred while in operation have indicated that voids behind the liner constitute the primary contributors to these failures. Consequently, it is imperative to devise lining reinforcement strategies tailored to the specific conditions encountered in the field. Fiber-reinforced plastic (FRP) represents a viable alternative construction material that has been widely utilized in the reinforcement of concrete structures. It is essential to quantitatively assess the reinforcing effect of FRP grids when they are employed in the restoration of deteriorated tunnel linings, thereby facilitating the development of effective maintenance designs. In this study, we aimed to enhance the sensitivity analysis of the reinforcement method by evaluating the impact of voids through the analysis of bending moments and axial forces within the tunnel lining. The effects of voids based on the different locations in which they occur were explored numerically through an Elastoplast finite element analysis. The study involved simulating tunnel linings that had been reinforced with FRP grids and assessing the effects of such reinforcement in tunnels afflicted with various structural problems. Based on the outcomes of these simulations, the internal forces within the lining are scrutinized, and the efficacy of the reinforcement is appraised.

Keywords