PLoS ONE (Jan 2014)

Up-regulated expression of AOS-LOXa and increased eicosanoid synthesis in response to coral wounding.

  • Helike Lõhelaid,
  • Tarvi Teder,
  • Kadri Tõldsepp,
  • Merrick Ekins,
  • Nigulas Samel

DOI
https://doi.org/10.1371/journal.pone.0089215
Journal volume & issue
Vol. 9, no. 2
p. e89215

Abstract

Read online

In octocorals, a catalase-like allene oxide synthase (AOS) and an 8R-lipoxygenase (LOX) gene are fused together encoding for a single AOS-LOX fusion protein. Although the AOS-LOX pathway is central to the arachidonate metabolism in corals, its biological function in coral homeostasis is unclear. Using an acute incision wound model in the soft coral Capnella imbricata, we here test whether LOX pathway, similar to its role in plants, can contribute to the coral damage response and regeneration. Analysis of metabolites formed from exogenous arachidonate before and after fixed time intervals following wounding indicated a significant increase in AOS-LOX activity in response to mechanical injury. Two AOS-LOX isoforms, AOS-LOXa and AOS-LOXb, were cloned and expressed in bacterial expression system as active fusion proteins. Transcription levels of corresponding genes were measured in normal and stressed coral by qPCR. After wounding, AOS-LOXa was markedly up-regulated in both, the tissue adjacent to the incision and distal parts of a coral colony (with the maximum reached at 1 h and 6 h post wounding, respectively), while AOS-LOXb was stable. According to mRNA expression analysis, combined with detection of eicosanoid product formation for the first time, the AOS-LOX was identified as an early stress response gene which is induced by mechanical injury in coral.