Hypoxic State of Cells and Immunosenescence: A Focus on the Role of the HIF Signaling Pathway
Dario Troise,
Barbara Infante,
Silvia Mercuri,
Giuseppe Stefano Netti,
Elena Ranieri,
Loreto Gesualdo,
Giovanni Stallone,
Paola Pontrelli
Affiliations
Dario Troise
Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy
Barbara Infante
Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy
Silvia Mercuri
Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy
Giuseppe Stefano Netti
Clinical Pathology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
Elena Ranieri
Clinical Pathology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
Loreto Gesualdo
Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
Giovanni Stallone
Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy
Paola Pontrelli
Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
Hypoxia activates hypoxia-related signaling pathways controlled by hypoxia-inducible factors (HIFs). HIFs represent a quick and effective detection system involved in the cellular response to insufficient oxygen concentration. Activation of HIF signaling pathways is involved in improving the oxygen supply, promoting cell survival through anaerobic ATP generation, and adapting energy metabolism to meet cell demands. Hypoxia can also contribute to the development of the aging process, leading to aging-related degenerative diseases; among these, the aging of the immune system under hypoxic conditions can play a role in many different immune-mediated diseases. Thus, in this review we aim to discuss the role of HIF signaling pathways following cellular hypoxia and their effects on the mechanisms driving immune system senescence.