Energy Conversion and Management: X (Oct 2024)

Electric vehicles: Battery technologies, charging standards, AI communications, challenges, and future directions

  • Mohammed Amer,
  • Jafar Masri,
  • Alya’ Dababat,
  • Uzair Sajjad,
  • Khalid Hamid

Journal volume & issue
Vol. 24
p. 100751

Abstract

Read online

Electric vehicles (EVs) have gained significant attention in recent years due to their potential to reduce greenhouse gas emissions and improve energy efficiency. An EV’s main source of power is its battery, which plays a crucial role in determining the vehicle’s overall performance and sustainability. The purpose of this paper is to examine the advancements in battery technology associated with EVs and the various charging standards applicable to EVs. Additionally, the most common types of automotive batteries are described and compared. Moreover, the application of artificial intelligence (AI) in EVs has been discussed. Finally, the challenges associated with EV battery development, as well as suggestions for improvement, are discussed. According to the study, Lithium-ion batteries are the most common in EVs due to their high energy density, long lifespan, and cost-effectiveness, despite their temperature sensitivity. Other battery types, like lead-acid and nickel-based, vary in efficiency, but are less commonly used in modern EVs. Solid-state batteries are seen as the future for their higher energy density and faster charging, though they face challenges like flammability. Wireless charging technology, still in development, promises superior convenience and sustainability than traditional methods. AI improves EV performance through enhanced battery management, autonomous driving, vehicle-to-grid communication, etc. Overcoming challenges like battery recycling, metal scarcity, and charging infrastructure will be crucial for the widespread adoption of EVs. This will be supported by government policies and battery technology innovations.

Keywords