Momento (Jan 2017)

DYNAMICS AND ENTANGLEMENT OF A QUANTUM DOT-CAVITY SYSTEM COUPLED BY A NON-LINEAR OPTICAL INTERACTION

  • Edgar A. Gómez,
  • Santiago E. Arteaga,
  • Herbert Vinck-Posada

DOI
https://doi.org/10.15446/mo.n54.62429
Journal volume & issue
Vol. 0, no. 54
pp. 29 – 39

Abstract

Read online

We propose a simple theoretical model for a dissipative quantum dot-microcavity system interacting with a non-linear optical interaction. The Lindblad master equation formalism is considered to study the full dynamics for both weak and strong coupling regimes. The photoluminescence spectra of the system at the stationary limit is calculated in an exact form, and the effect due to non-linear optical interaction is explicitly evidenced. The entanglement of the system is calculated, and we found revivals and sudden death are evidenced. We also study the relationship between the light-matter and non-linear optical interaction terms by calculating the average photon number.

Keywords