Frontiers in Integrative Neuroscience (Aug 2020)

Neurophysiological and Genetic Findings in Patients With Juvenile Myoclonic Epilepsy

  • Stefani Stefani,
  • Stefani Stefani,
  • Ioanna Kousiappa,
  • Ioanna Kousiappa,
  • Nicoletta Nicolaou,
  • Nicoletta Nicolaou,
  • Eleftherios S. Papathanasiou,
  • Eleftherios S. Papathanasiou,
  • Anastasis Oulas,
  • Anastasis Oulas,
  • Pavlos Fanis,
  • Pavlos Fanis,
  • Vassos Neocleous,
  • Vassos Neocleous,
  • Leonidas A. Phylactou,
  • Leonidas A. Phylactou,
  • George M. Spyrou,
  • George M. Spyrou,
  • Savvas S. Papacostas,
  • Savvas S. Papacostas,
  • Savvas S. Papacostas,
  • Savvas S. Papacostas

DOI
https://doi.org/10.3389/fnint.2020.00045
Journal volume & issue
Vol. 14

Abstract

Read online

ObjectiveTranscranial magnetic stimulation (TMS), a non-invasive procedure, stimulates the cortex evaluating the central motor pathways. The response is called motor evoked potential (MEP). Polyphasia results when the response crosses the baseline more than twice (zero crossing). Recent research shows MEP polyphasia in patients with generalized genetic epilepsy (GGE) and their first-degree relatives compared with controls. Juvenile Myoclonic Epilepsy (JME), a GGE type, is not well studied regarding polyphasia. In our study, we assessed polyphasia appearance probability with TMS in JME patients, their healthy first-degree relatives and controls. Two genetic approaches were applied to uncover genetic association with polyphasia.Methods20 JME patients, 23 first-degree relatives and 30 controls underwent TMS, obtaining 10–15 MEPs per participant. We evaluated MEP mean number of phases, proportion of MEP trials displaying polyphasia for each subject and variability between groups. Participants underwent whole exome sequencing (WES) via trio-based analysis and two-case scenario. Extensive bioinformatics analysis was applied.ResultsWe identified increased polyphasia in patients (85%) and relatives (70%) compared to controls (47%) and significantly higher mean number of zero crossings (i.e., occurrence of phases) (patients 1.49, relatives 1.46, controls 1.22; p < 0.05). Trio-based analysis revealed a candidate polymorphism, p.Glu270del,in SYT14 (Synaptotagmin 14), in JME patients and their relatives presenting polyphasia. Sanger sequencing analysis in remaining participants showed no significant association. In two-case scenario, a machine learning approach was applied in variants identified from odds ratio analysis and risk prediction scores were obtained for polyphasia. The results revealed 61 variants of which none was associated with polyphasia. Risk prediction scores indeed showed lower probability for non-polyphasic subjects on having polyphasia and higher probability for polyphasic subjects on having polyphasia.ConclusionPolyphasia was present in JME patients and relatives in contrast to controls. Although no known clinical symptoms are linked to polyphasia this neurophysiological phenomenon is likely due to common cerebral electrophysiological abnormality. We did not discover direct association between genetic variants obtained and polyphasia. It is likely these genetic traits alone cannot provoke polyphasia, however, this predisposition combined with disturbed brain-electrical activity and tendency to generate seizures may increase the risk of developing polyphasia, mainly in patients and relatives.

Keywords