Controlled Sputtering Pressure on High-Quality Sb<sub>2</sub>Se<sub>3</sub> Thin Film for Substrate Configurated Solar Cells
Rong Tang,
Xingye Chen,
Yandi Luo,
Zihang Chen,
Yike Liu,
Yingfen Li,
Zhenghua Su,
Xianghua Zhang,
Ping Fan,
Guangxing Liang
Affiliations
Rong Tang
Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Xingye Chen
Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Yandi Luo
Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Zihang Chen
Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Yike Liu
School of Material and Metallurgical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
Yingfen Li
School of Material and Metallurgical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
Zhenghua Su
Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Xianghua Zhang
ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, CNRS, Univ. Rennes, 35042 Rennes, France
Ping Fan
Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Guangxing Liang
Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Magnetron sputtering has become an effective method in Sb2Se3 thin film photovoltaic. Research found that post-selenization treatments are essential to produce stoichiometric thin films with desired crystallinity and orientation for the sputtered Sb2Se3. However, the influence of the sputtering process on Sb2Se3 device performance has rarely been explored. In this work, the working pressure effect was thoroughly studied for the sputtered Sb2Se3 thin film solar cells. High-quality Sb2Se3 thin film was obtained when a bilayer structure was applied by sputtering the film at a high (1.5 Pa) and a low working pressure (1.0 Pa) subsequently. Such bilayer structure was found to be beneficial for both crystallization and preferred orientation of the Sb2Se3 thin film. Lastly, an interesting power conversion efficiency (PCE) of 5.5% was obtained for the champion device.