The Journal of Clinical Investigation (Nov 2022)

Loss of function of the nuclear envelope protein LEMD2 causes DNA damage–dependent cardiomyopathy

  • Xurde M. Caravia,
  • Andres Ramirez-Martinez,
  • Peiheng Gan,
  • Feng Wang,
  • John R. McAnally,
  • Lin Xu,
  • Rhonda Bassel-Duby,
  • Ning Liu,
  • Eric N. Olson

Journal volume & issue
Vol. 132, no. 22

Abstract

Read online

Mutations in nuclear envelope proteins (NEPs) cause devastating genetic diseases, known as envelopathies, that primarily affect the heart and skeletal muscle. A mutation in the NEP LEM domain–containing protein 2 (LEMD2) causes severe cardiomyopathy in humans. However, the roles of LEMD2 in the heart and the pathological mechanisms responsible for its association with cardiac disease are unknown. We generated knockin (KI) mice carrying the human c.T38>G Lemd2 mutation, which causes a missense amino acid exchange (p.L13>R) in the LEM domain of the protein. These mice represent a preclinical model that phenocopies the human disease, as they developed severe dilated cardiomyopathy and cardiac fibrosis leading to premature death. At the cellular level, KI/KI cardiomyocytes exhibited disorganization of the transcriptionally silent heterochromatin associated with the nuclear envelope. Moreover, mice with cardiac-specific deletion of Lemd2 also died shortly after birth due to heart abnormalities. Cardiomyocytes lacking Lemd2 displayed nuclear envelope deformations and extensive DNA damage and apoptosis linked to p53 activation. Importantly, cardiomyocyte-specific Lemd2 gene therapy via adeno-associated virus rescued cardiac function in KI/KI mice. Together, our results reveal the essentiality of LEMD2 for genome stability and cardiac function and unveil its mechanistic association with human disease.

Keywords