BMC Plant Biology (Sep 2021)

Grazing intensity changed the activities of nitrogen assimilation related enzymes in desert Steppe Plants

  • Aimin Zhu,
  • Haili Liu,
  • Yuehua Wang,
  • Hailian Sun,
  • Guodong Han

DOI
https://doi.org/10.1186/s12870-021-03205-0
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Nitrogen, as a limiting factor for net primary productivity in grassland ecosystems, is an important link in material cycles in grassland ecosystems. However, the nitrogen assimilation efficiency and mechanisms of grassland plants under grazing disturbance are still unclear. This study investigated Stipa breviflora desert steppe which had been grazed for 17 years and sampled the root system and leaf of the constructive species Stipa breviflora during the peak growing season under no grazing, light grazing, moderate grazing and heavy grazing treatments. The activities of enzymes related to nitrogen assimilation in roots and leaves were measured. Results Compared with no grazing, light grazing and moderate grazing significantly increased the activities of nitrate reductase (NR), glutamine synthetase (GS), glutamic oxaloacetic transaminase (GOT) and glutamic pyruvate transaminase (GPT) in leaves, and GS, GOT and GPT in roots of Stipa breviflora, while heavy grazing significantly decreased the activities of GS in leaves and NR in roots of Stipa breviflora. NR, GOT and GPT activities in leaves and roots of Stipa breviflora were positively correlated with nitrogen content, soluble protein, free amino acid and nitrate content. Conclusions Grazing disturbance changed the activities of nitrogen assimilation related enzymes of grassland plants, and emphasized that light grazing and moderate grazing were beneficial for nitrogen assimilation by grassland plants. Therefore, establishing appropriate stocking rates is of great significance for material flows in this grassland ecosystem and for the stability and sustainable utilization of grassland resources.

Keywords