Liquids (May 2024)

Enhancement of Catalytic Efficiency of Enzymatic Redox Reactions by Composing Horseradish Peroxidase-Modified Electrode with Ionic Liquids

  • Yasuko Noritomi,
  • Takashi Kuboki,
  • Hidetaka Noritomi

DOI
https://doi.org/10.3390/liquids4020020
Journal volume & issue
Vol. 4, no. 2
pp. 393 – 401

Abstract

Read online

We have kinetically estimated the enzymatic redox reaction at the horseradish peroxidase (HRP)-modified electrode combined with ionic liquids by adding N-(2-methoxythethyl)-N-methylpyrrolidinium bis(trifluoromethane sulfonyl)imide (MEMPTFSI) to HRP/carbon paste (CP)/Ketjenblack EC600JC (EC). The fluctuation of the steady-state reduction current of HRP at the HRP/CP-modified electrode progressively increased as the applied potential was lowered. The enzymatic redox reaction with hydrogen peroxide as a substrate at the HRP/CP/EC/MEMPTFSI-modified electrode and the HRP/CP-modified electrode could be correlated by the Michaelis–Menten equation. The Michaelis constant of the enzymatic redox reaction at the HRP/CP/EC/MEMPTFSI-modified electrode was the same as that at the HRP/CP-modified electrode. On the other hand, the turnover number of the enzymatic redox reaction at the HRP/CP/EC/MEMPTFSI-modified electrode was six times larger than that at the HRP/CP-modified electrode. Consequently, the specificity constant of the enzymatic redox reaction at the HRP/CP/EC/MEMPTFSI-modified electrode was much higher than that at the HRP/CP-modified electrode.

Keywords