Remote Sensing (Nov 2022)

Initial Drift Correction and Spectral Calibration of MarSCoDe Laser-Induced Breakdown Spectroscopy on the Zhurong Rover

  • Liangchen Jia,
  • Xiangfeng Liu,
  • Weiming Xu,
  • Xuesen Xu,
  • Luning Li,
  • Zhicheng Cui,
  • Ziyi Liu,
  • Rong Shu

DOI
https://doi.org/10.3390/rs14235964
Journal volume & issue
Vol. 14, no. 23
p. 5964

Abstract

Read online

The Mars Surface Composition Detector (MarSCoDe) carried by the Zhurong rover of China’s Tianwen-1 mission uses Laser-Induced Breakdown Spectroscopy (LIBS) to detect and analyze the material composition on Martian surfaces. As one extraterrestrial remote LIBS system, it is necessary to adopt effective and reliable preprocessing methods to correct the spectral drift caused by the changes in environmental conditions, to ensure the analysis accuracy of LIBS scientific data. This paper focuses on the initial spectral drift correction and estimates the accuracy of on-board wavelength calibration on the LIBS calibration target measured by the MarSCoDe LIBS. There may be two cases during the instrument launch and landing, as well as the long-term operation: (a) the initial wavelength calibration relationship can still apply to the on-board LIBS measurement; and (b) the initial wavelength calibration relationship has been changed, and a new on-board calibration is needed to establish the current relationship. An approach of matching based on global iterative registration (MGR) is presented in respect to case (a). It is also compared with the approach of particle swarm optimization (PSO) for case (b). Furthermore, their accuracy is estimated with the comparison to the National Institute of Standards and Technology (NIST) database. The experimental results show that the proposed approach can effectively correct the drift of the on-board LIBS spectrum. The the root-mean-square error (RMSE) of the internal accord accuracy for three channels is 0.292, 0.223 and 0.247 pixels, respectively, compared with the corrected Ti-alloy spectrum and the NIST database, and the RMSE of the external accord accuracy is 0.232, 0.316 and 0.229 pixels, respectively, for other samples. The overall correction accuracy of the three channels is better than one-third of the sampling interval.

Keywords