Scientific Reports (Mar 2021)

Influential factors and spatial–temporal distribution of tuberculosis in mainland China

  • Siyu Bie,
  • Xijian Hu,
  • Huiguo Zhang,
  • Kai Wang,
  • Zhihui Dou

DOI
https://doi.org/10.1038/s41598-021-85781-7
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Tuberculosis (TB) is an infectious disease that threatens human safety. Mainland China is an area with a high incidence of tuberculosis, and the task of tuberculosis prevention and treatment is arduous. This paper aims to study the impact of seven influencing factors and spatial–temporal distribution of the relative risk (RR) of tuberculosis in mainland China using the spatial–temporal distribution model and INLA algorithm. The relative risks and confidence intervals (CI) corresponding to average relative humidity, monthly average precipitation, monthly average sunshine duration and monthly per capita GDP were 1.018 (95% CI 1.001–1.034), 1.014 (95% CI 1.006–1.023), 1.026 (95% CI 1.014–1.039) and 1.025 (95% CI 1.011–1.040). The relative risk for average temperature and pressure were 0.956 (95% CI 0.942–0.969) and 0.767 (95% CI 0.664–0.875). Spatially, the two provinces with the highest relative risks are Xinjiang and Guizhou, and the remaining provinces with higher relative risks were mostly concentrated in the Northwest and South China regions. Temporally, the relative risk decreased year by year from 2013 to 2015. It was higher from February to May each year and was most significant in March. It decreased from June to December. Average relative humidity, monthly average precipitation, monthly average sunshine duration and monthly per capita GDP had positive effects on the relative risk of tuberculosis. The average temperature and pressure had negative effects. The average wind speed had no significant effect. Mainland China should adapt measures to local conditions and develop tuberculosis prevention and control strategies based on the characteristics of different regions and time.