Sensors (Mar 2022)

Development of a 3D Relative Motion Method for Human–Robot Interaction Assessment

  • Felipe Ballen-Moreno,
  • Margarita Bautista,
  • Thomas Provot,
  • Maxime Bourgain,
  • Carlos A. Cifuentes,
  • Marcela Múnera

DOI
https://doi.org/10.3390/s22062411
Journal volume & issue
Vol. 22, no. 6
p. 2411

Abstract

Read online

Exoskeletons have been assessed by qualitative and quantitative features known as performance indicators. Within these, the ergonomic indicators have been isolated, creating a lack of methodologies to analyze and assess physical interfaces. In this sense, this work presents a three-dimensional relative motion assessment method. This method quantifies the difference of orientation between the user’s limb and the exoskeleton link, providing a deeper understanding of the Human–Robot interaction. To this end, the AGoRA exoskeleton was configured in a resistive mode and assessed using an optoelectronic system. The interaction quantified a difference of orientation considerably at a maximum value of 41.1 degrees along the sagittal plane. It extended the understanding of the Human–Robot Interaction throughout the three principal human planes. Furthermore, the proposed method establishes a performance indicator of the physical interfaces of an exoskeleton.

Keywords