Fundamental Research (Jul 2024)

Unveiling the critical role of TiO2-supported atomically dispersed Cu species for enhanced photofixation of N2 to nitrate

  • Dong Li,
  • Yunxuan Zhao,
  • Chao Zhou,
  • Li-Ping Zhang,
  • Junwang Tang,
  • Tierui Zhang

Journal volume & issue
Vol. 4, no. 4
pp. 934 – 940

Abstract

Read online

Nitrate products are widely used in manufacturing as crucial raw materials and fertilizers. The traditional nitrate synthesis process involves high energy consumption and emission, thereby opposing the goals of zero-carbon emission and green chemistry. Thus, a sustainable roadmap for nitrate synthesis that uses green energy input, clean N sources, and direct catalytic processes is urgently required (e.g., developing a novel photosynthesis system). Here, we synthesized TiO2-supported atomically dispersed Cu species for N2 photofixation to nitrate in a flow reactor. The optimized photocatalyst yielded a high nitrate photosynthesis rate of 0.93 μmol h−1 and selectivity of ∼90%, which is superior to most of the values reported thus far. Further, experimental results and in-situ investigations revealed that the atomically dispersed Cu sites in the as-designed sample significantly enhanced the separation and transfer efficiency of photogenerated carriers, adsorption and activation of reactants, and the formation of chemisorbed NOx intermediates, thereby realizing the excellent photofixation of N2 to nitrate.

Keywords