Biomedicines (Sep 2023)

Detection of Amyotrophic Lateral Sclerosis (ALS) Comorbidity Trajectories Based on Principal Tree Model Analytics

  • Yang-Sheng Wu,
  • David Taniar,
  • Kiki Adhinugraha,
  • Li-Kai Tsai,
  • Tun-Wen Pai

DOI
https://doi.org/10.3390/biomedicines11102629
Journal volume & issue
Vol. 11, no. 10
p. 2629

Abstract

Read online

The multifaceted nature and swift progression of Amyotrophic Lateral Sclerosis (ALS) pose considerable challenges to our understanding of its evolution and interplay with comorbid conditions. This study seeks to elucidate the temporal dynamics of ALS progression and its interaction with associated diseases. We employed a principal tree-based model to decipher patterns within clinical data derived from a population-based database in Taiwan. The disease progression was portrayed as branched trajectories, each path representing a series of distinct stages. Each stage embodied the cumulative occurrence of co-existing diseases, depicted as nodes on the tree, with edges symbolizing potential transitions between these linked nodes. Our model identified eight distinct ALS patient trajectories, unveiling unique patterns of disease associations at various stages of progression. These patterns may suggest underlying disease mechanisms or risk factors. This research re-conceptualizes ALS progression as a migration through diverse stages, instead of the perspective of a sequence of isolated events. This new approach illuminates patterns of disease association across different progression phases. The insights obtained from this study hold the potential to inform doctors regarding the development of personalized treatment strategies, ultimately enhancing patient prognosis and quality of life.

Keywords