BMC Plant Biology (Jun 2010)

A nematode demographics assay in transgenic roots reveals no significant impacts of the <it>Rhg1 </it>locus LRR-Kinase on soybean cyst nematode resistance

  • Diers Brian W,
  • Cook David,
  • Heuberger Adam L,
  • Melito Sara,
  • MacGuidwin Ann E,
  • Bent Andrew F

DOI
https://doi.org/10.1186/1471-2229-10-104
Journal volume & issue
Vol. 10, no. 1
p. 104

Abstract

Read online

Abstract Background Soybean cyst nematode (Heterodera glycines, SCN) is the most economically damaging pathogen of soybean (Glycine max) in the U.S. The Rhg1 locus is repeatedly observed as the quantitative trait locus with the greatest impact on SCN resistance. The Glyma18g02680.1 gene at the Rhg1 locus that encodes an apparent leucine-rich repeat transmembrane receptor-kinase (LRR-kinase) has been proposed to be the SCN resistance gene, but its function has not been confirmed. Generation of fertile transgenic soybean lines is difficult but methods have been published that test SCN resistance in transgenic roots generated with Agrobacterium rhizogenes. Results We report use of artificial microRNA (amiRNA) for gene silencing in soybean, refinements to transgenic root SCN resistance assays, and functional tests of the Rhg1 locus LRR-kinase gene. A nematode demographics assay monitored infecting nematode populations for their progress through developmental stages two weeks after inoculation, as a metric for SCN resistance. Significant differences were observed between resistant and susceptible control genotypes. Introduction of the Rhg1 locus LRR-kinase gene (genomic promoter/coding region/terminator; Peking/PI 437654-derived SCN-resistant source), into rhg1- SCN-susceptible plant lines carrying the resistant-source Rhg4+ locus, provided no significant increases in SCN resistance. Use of amiRNA to reduce expression of the LRR-kinase gene from the Rhg1 locus of Fayette (PI 88788 source of Rhg1) also did not detectably alter resistance to SCN. However, silencing of the LRR-kinase gene did have impacts on root development. Conclusion The nematode demographics assay can expedite testing of transgenic roots for SCN resistance. amiRNAs and the pSM103 vector that drives interchangeable amiRNA constructs through a soybean polyubiqutin promoter (Gmubi), with an intron-GFP marker for detection of transgenic roots, may have widespread use in legume biology. Studies in which expression of the Rhg1 locus LRR-kinase gene from different resistance sources was either reduced or complemented did not reveal significant impacts on SCN resistance.