Discussiones Mathematicae Graph Theory (May 2015)

(K − 1)-Kernels In Strong K-Transitive Digraphs

  • Wang Ruixia

DOI
https://doi.org/10.7151/dmgt.1787
Journal volume & issue
Vol. 35, no. 2
pp. 229 – 235

Abstract

Read online

Let D = (V (D),A(D)) be a digraph and k ≥ 2 be an integer. A subset N of V (D) is k-independent if for every pair of vertices u, v ∈ N, we have d(u, v) ≥ k; it is l-absorbent if for every u ∈ V (D) − N, there exists v ∈ N such that d(u, v) ≤ l. A (k, l)-kernel of D is a k-independent and l-absorbent subset of V (D). A k-kernel is a (k, k − 1)-kernel.

Keywords