Geofluids (Jan 2021)

Factors Controlling Shale Reservoirs and Development Potential Evaluation: A Case Study

  • Chao Luo,
  • Hun Lin,
  • Yujiao Peng,
  • Hai Qu,
  • Xiaojie Huang,
  • Nanxin Yin,
  • Wei Liu,
  • Xuanbo Gao

DOI
https://doi.org/10.1155/2021/6661119
Journal volume & issue
Vol. 2021

Abstract

Read online

The shale of the Lower Silurian Longmaxi Formation is an important gas-producing layer for shale gas development in southern China. This set of shale reservoir characteristics and shale gas development potential provide an important foundation for shale gas development. This study takes wellblock XN111 in the Sichuan Basin, China, as an example and uses X-ray diffraction (XRD), scanning electron microscopy (SEM), isothermal adsorption, and other techniques to analyze the shale reservoir characteristics of the Lower Silurian Longmaxi Formation. The results show that the Lower Silurian Longmaxi Formation was deposited in a deep-water shelf environment. During this period, carbonaceous shale and siliceous shale characterized by a high brittle mineral content (quartz>40 wt.%, carbonate mineral>10 wt.%) and a low clay mineral content (<30 wt.%, mainly illite) were widely deposited throughout the region. The total organic carbon (TOC) content reaches up to 6.07 wt.%, with an average of 2.66 wt.%. The vitrinite reflectance is 1.6–2.28%, with an average of 2.05%. The methane adsorption capacity is 0.84–4.69 m3/t, with an average of 2.92 m3/t. Pores and fractures are developed in the shale reservoirs. The main reservoir space is composed of connected mesopores with an average porosity of 4.78%. The characteristics and development potential of the shale reservoirs in the Lower Silurian Longmaxi Formation are controlled by the following factors: (1) the widespread deep-water shelf deposition in wellblock XN111 was a favorable environment for the development of high-quality shale reservoirs with a cumulative thickness of up to 50 m; (2) the high TOC content enabled the shale reservoir to have a high free gas content and a high adsorptive gas storage capacity; and (3) the shale’s high maturity or over maturity is conducive to the development of pores and fractures in the organic matter, which effectively improves the storage capacity of the shale reservoirs. The reservoir characteristic index was constructed using the high-quality shale’s thickness, gas content, TOC, fracture density, and clay content. Using production data from shale gas wells in adjacent blocks, a mathematical relationship was established between the Estimated Ultimate Recovery (EUR) of a single well and the Reservoir Characteristics Index (Rci). The EUR of a single well in wellblock XN111 was estimated.