Limnological Review (Sep 2019)

The lethal effect of hydrotechnical concrete on freshwater Bivalvia

  • Wojtasik Barbara,
  • Zbawicka Małgorzata,
  • Grabarczyk Lucyna,
  • Kurpińska Marzena

DOI
https://doi.org/10.2478/limre-2019-0012
Journal volume & issue
Vol. 19, no. 3
pp. 137 – 145

Abstract

Read online

Most hydrotechnical buildings under construction demand the concrete mixture to be set directly under water. The main reason for such a procedure is to limit the washing away of the the concrete binding mixture and to increase the efficiency of organisation of work so as to ensure continuity in concreting. The impact on the aquatic environment of recent developments in concrete technology and the use of new components has not yet been established. Natural pebble aggregate containing portland cement and fugacious siliceous ash as a binder was used to prepare BP concrete samples, while concrete marked LB was composed with lightweight aggregate and portland cement as a binder. The aim of this paper was to answer to the question whether hydrotechnical concrete of different compositions (BP and LB) and the technology of setting in a water habitat have any influence on the life condition of commonly occurring Dreissena polymorpha (Mollusca, Bivalvia). The lethal effect of two types of freshly hardening concrete was observed. In the case of LB concrete the lethal outcome for D. polymorpha could be the effect of a considerable increase of electrolytic conduction in the test cultivation. In the case of BP the parameters of electrolytic conductivity and pH did not exceed the values appearing in lakes. The possibility of the occurrence of toxic compounds of D. polymorpha, arising from the reaction of the aquatic / lake environment or the elution of some components should be taken into account. D. polymorpha serves as an indicator of toxicity in the aquatic environment and therefore can be used as a model organism in the analysis of the influence concrete on the natural environment. The results obtained in this study indicate the significant impact of modern chemical composition of concrete on the aquatic environment and the living organisms that cover it. They underline the need for research based on the hydrobiont reaction to the substances used in the natural environment.

Keywords