Mass Production of Nanowire-Nylon Flexible Transparent Smart Windows for PM2.5 Capture
Wei-Ran Huang,
Zhen He,
Jin-Long Wang,
Jian-Wei Liu,
Shu-Hong Yu
Affiliations
Wei-Ran Huang
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Science and Technology of China, Hefei 230026, China
Zhen He
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Science and Technology of China, Hefei 230026, China
Jin-Long Wang
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Science and Technology of China, Hefei 230026, China
Jian-Wei Liu
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Science and Technology of China, Hefei 230026, China; Corresponding author
Shu-Hong Yu
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Science and Technology of China, Hefei 230026, China; Corresponding author
Summary: Designing large-area flexible transparent smart windows for high-efficiency indoor fine particulate matter (PM2.5) capture is important to guarantee safe indoor environments. In this article, we demonstrate that large-area fabrication of flexible transparent Ag-nylon mesh can be performed not only to turn the indoor light illumination intensity as thermochromic smart windows after uniformly coating with thermochromic dye but also to purify indoor air as high-efficiency PM2.5 filter. It takes only about $15.03 and 20 min to fabricate 7.5-m2 Ag-nylon flexible transparent windows without any modification with a sheet resistance of as low as 8.87 Ω sq−1 and optical transmittance of 86.05%. As an excellent PM filter (can be recycled after PM filtration), the removal efficiency is as high as 99.65% and the processing speed is high, which can reduce the PM2.5 density from heavily polluted (248 μg·m−3, purple alert) to good (32.9 μg·m−3, green statement) in 50 s. : Environmental Nanotechnology; Materials Processing; Electrical Materials Subject Areas: Environmental Nanotechnology, Materials Processing, Electrical Materials