Ecotoxicology and Environmental Safety (Sep 2024)

Conjoint transcriptomics and metabolomics analyses provide insights into the toxicity of acetamiprid to Lethenteron reissneri larvae

  • Yitong Li,
  • Jiali Lu,
  • Xiaoping Song,
  • Yaocen Wang,
  • Qingwei Li,
  • Yue Pang,
  • Meng Gou

Journal volume & issue
Vol. 283
p. 116828

Abstract

Read online

The neonicotinoid pesticide acetamiprid has been widely used in agricultural pest control and was frequently detected in the water environment. There have been some studies of the toxic effects of acetamiprid on fish, but studies on aquatic lower vertebrates are still very limited.As a primitive jawless vertebrate, Lethenteron reissneri has a special position in evolution and is now listed as a national second level protected animal in China. The present study aimed to investigate the toxic effect of acetamiprid on the liver of L. reissneri larvae. A conjoint analysis of the transcriptomics and metabolomics was performed to determine the responses of L. reissneri larvae liver to acetamiprid at different concentrations (L for low concentration 25 mg/L and H for high concentration 100 mg/L). Even low concentrations of acetamiprid can cause significant liver damage to L. reissneri larvae in a short period. In omics analyses, 2141 differentially expressed genes (DEGs) and 183 differentially abundant metabolites (DAMs) were identified in the H/Control group, and 229 DEGs and 144 DAMs were identified in the L/C group. Correlation analyses revealed acetamiprid affected the metabolic pathways of L. reissneri larvae liver such as the glycerophospholipid metabolism and arachidonic acid metabolism. This study not only enriches the basis for understanding the toxic effect of acetamiprid exposure to L. reissneri larvae liver and provides more information on the breeding and conservation of L. reissneri, but also further causes attention on toxicity risk from acetamiprid to aquatic lower vertebrate species.

Keywords