Agronomy (Feb 2020)

Analysis of the Influence of Different Parameters on Droplet Characteristics and Droplet Size Classification Categories for Air Induction Nozzle

  • Juan Liao,
  • Xiwen Luo,
  • Pei Wang,
  • Zhiyan Zhou,
  • Chris C. O’Donnell,
  • Ying Zang,
  • Andrew J. Hewitt

DOI
https://doi.org/10.3390/agronomy10020256
Journal volume & issue
Vol. 10, no. 2
p. 256

Abstract

Read online

Droplet characteristics are identified as essential factors in agricultural spray application. The aims of this study were to analyse the influence of spray parameters on droplet characteristics and to determine possible candidate sprays that would produce the same droplet size categorizations as the American Society of Agricultural and Biological Engineers (ASABE) standard S-572.1 for air induction nozzles (AINs). Six different orifice sizes of the Billericay Farm Services (BFS) air induction (AI) flat fan hydraulic nozzles (the air bubblejet) were examined at different spray pressures (200 kPa, 300 kPa, 400 kPa, 500 kPa, 600 kPa and 700 kPa) and concurrent air velocities (2 m/s, 3 m/s, 4 m/s and 5 m/s). The influences of spray parameters on the droplet characteristics were analysed using analysis of covariance (ANCOVA) and analysis of variance (ANOVA). Results showed that: (1) The values of droplet characteristics and the results of ANOVA were significantly different before and after eliminate the influence of dynamic surface tension (DST) on droplet characteristics by ANCOVA; (2) (a) the reduction rates of the droplet diameter sizes decreased with increasing spray pressure; (b) air velocities of 2 m/s and 5 m/s resulted in smaller droplets reports, and air velocities of 3 m/s and 4 m/s are more suitable for agricultural spray applications; (c) a larger nozzle orifice size not always result in a larger droplet size and (3) Fine, Medium, Coarse, Very Coarse and Extremely Coarse droplet classification categories as the ASABE S-572.1 standard categorizations were determined to classify AINs.

Keywords