Scientific Reports (Jan 2025)
Interpretable and integrative deep learning for discovering brain-behaviour associations
Abstract
Abstract Recent advances highlight the limitations of classification strategies in machine learning that rely on a single data source for understanding, diagnosing and predicting psychiatric syndromes. Moreover, approaches based solely on clinician labels often fail to capture the complexity and variability of these conditions. Recent research underlines the importance of considering multiple dimensions that span across different psychiatric syndromes. These developments have led to more comprehensive approaches to studying psychiatric conditions that incorporate diverse data sources such as imaging, genetics, and symptom reports. Multi-view unsupervised learning frameworks, particularly deep learning models, present promising solutions for integrating and analysing complex datasets. Such models contain generative capabilities which facilitate the exploration of relationships between different data views. In this study, we propose a robust framework for interpreting these models that combines digital avatars with stability selection to assess these relationships. We apply this framework to the Healthy Brain Network cohort which includes clinical behavioural scores and brain imaging features, uncovering a consistent set of brain-behaviour interactions. These associations link cortical measurements obtained from structural MRI with clinical reports evaluating psychiatric symptoms. Our framework effectively identifies relevant and stable associations, even with incomplete datasets, while isolating variability of interest from confounding factors.