Animals (Mar 2025)
Transcriptomics Reveals the Differences in mRNA Expression Patterns in Yak Uterus of Follicular, Luteal, and Pregnant Phases
Abstract
The yak, an important livestock mostly living in the Qinghai–Tibet Plateau region, has attracted massive attention due to its reproductive specificity. However, the molecular mechanism regulating yak uterine functions remains to be explored. This study utilized transcriptomics to identify differentially expressed genes (DEGs) in yaks across uteruses undergoing the follicular phase (UFP) (n = 3/group), luteal phase (ULP) (n = 3/group), and pregnant phase (UPP) (n = 3/group), aiming to depict and compare their transcriptomic characteristics. For the UFP and ULP groups, 495 DEGs were identified, including 329 upregulated and 166 downregulated DEGs in group ULP compared to UFP. Advanced analysis indicated that these DEGs between UFP and ULP were primary participants in GO items, such as adhesion, cell differentiation, and development, and were significantly enriched in KEGG signaling pathways like arachidonic acid metabolism, retinol metabolism, and cAMP signaling pathways. For the UFP and UPP groups, 353 DEGs were obtained, comprising 198 upregulated and 155 downregulated DEGs in group UPP compared to UFP. Advanced analysis showed that these DEGs between UFP and UPP were mainly related to GO items such as adhesion, binding, and the extracellular region, and were prominently enriched in KEGG signaling pathways like ECM-receptor interaction, the relaxing signaling pathway, and focal adhesion. For the groups ULP and UPP, 1303 DEGs were identified, encompassing 709 upregulated and 594 downregulated DEGs in group UPP compared to ULP. Advanced analysis indicated that these DEGs between ULP and UPP were associated with GO items such as multicellular organismal processes, cell differentiation, and the extracellular region, and mainly gathered in KEGG signaling pathways like signal transduction, cell differentiation, metabolism, and autophagy. These results provide valuable insights into the key biomarkers observable via dynamic changes in the yak uterus and offer a theoretical basis for further studies on yak reproductive mechanisms and improving production performance.
Keywords