Analytical Cellular Pathology (Jan 2022)
miR-138-5p Inhibits the Growth and Invasion of Glioma Cells by Regulating WEE1
Abstract
Background. Accumulating evidence has demonstrated the role of differentially expressed miRNAs in glioma progression. Our previous bioinformatics analyses revealed a role of miR-138-5p in glioma. miR-138-5p was decreased in various tumors, and He et al. found that miR-138-5p had an inhibitory effect on glioma cells in 2021. However, the role of miR-138-5p in the development of glioma and the underlying mechanism is unknown. In this study, we explored whether miR-138-5p affects the biology of glioma by regulating WEE1 expression. Methods. miR-138-5p and WEE1 G2 checkpoint kinase (WEE1) RNA and protein expression levels in glioma tissues were detected with qRT-PCR and western blotting, respectively. The effects of miR-138-5p and WEE1 on glioma cell migration and invasion were investigated using Transwell assays. CCK-8 assay was used to measure the effects of miR-138-5p and WEE1 on glioma cell proliferation. The mortality of glioma cells transfected with miR-138-5p and WEE1 was measured with flow cytometry. The relationship between miR-138-5p and WEE1 was explored using a luciferase reporter analysis. Results. Functional studies indicated that overexpression of miR-138-5p suppressed cell proliferation, migration, and invasion and promoted death in glioma cell lines. WEE1 was identified as a target of miR-138-5p, and overexpression of miR-138-5p significantly suppressed the levels of WEE1. Moreover, reintroduction of WEE1 partially abrogated miR-138-5p-induced suppression of motility and invasion in glioma cells. Conclusion. The low expression of miR-138-5p in glioma suggests a tumor suppressor role for this miRNA. miR-138-5p suppresses glioma progression by regulating WEE1. These data provide new insights into the molecular mechanism of glioma.