Solid Earth (Jan 2011)
Some improvements in subbasalt imaging using pre-stack depth migration
Abstract
Subbasalt imaging can be improved by carefully applying pre-stack depth migration. Pre-stack depth migration requires a detailed velocity model and an accurate traveltime calculation. Ray tracing methods are fast but, often fail in calculating traveltimes in complex models, specially, when they feature high velocity contrasts. Finitte difference solutions of the eikonal are more stable and can produce a traveltime field for the whole model avoiding shadow zones. A synthetic test was carried out to check the performance of a new pre-stack depth migration algorithm in a model that features a high velocity layer surrounded by lower velocities. The results reasonably reproduce the original model. The same scheme was used to process long-offset reflection data from the Faroe Shelf where conventional techniques (stack) were insufficient to assess the structure under a basalt layer. Pre-stack depth migration produced an improved image which recovered the main features in the stacked section and allowed to identify some subbasalt coherent events.