PLoS ONE (Jan 2024)

Carbon system state determines warming potential of emissions.

  • Alexander J Winkler,
  • Ranga Myneni,
  • Christian Reimers,
  • Markus Reichstein,
  • Victor Brovkin

DOI
https://doi.org/10.1371/journal.pone.0306128
Journal volume & issue
Vol. 19, no. 8
p. e0306128

Abstract

Read online

Current strategies to hold surface warming below a certain level, e. g., 1.5 or 2°C, advocate limiting total anthropogenic cumulative carbon emissions to ∼0.9 or ∼1.25 Eg C (1018 grams carbon), respectively. These allowable emission budgets are based on a near-linear relationship between cumulative emissions and warming identified in various modeling efforts. The IPCC assesses this near-linear relationship with high confidence in its Summary for Policymakers (§D1.1 and Figure SPM.10). Here we test this proportionality in specially designed simulations with a latest-generation Earth system model (ESM) that includes an interactive carbon cycle with updated terrestrial ecosystem processes, and a suite of CMIP simulations (ZecMIP, ScenarioMIP). We find that atmospheric CO2 concentrations can differ by ∼100 ppmv and surface warming by ∼0.31°C (0.46°C over land) for the same cumulated emissions (≈1.2 Eg C, approximate carbon budget for 2°C target). CO2 concentration and warming per 1 Eg of emitted carbon (Transient Climate Response to Cumulative Carbon Emissions; TCRE) depend not just on total emissions, but also on the timing of emissions, which heretofore have been mainly overlooked. A decomposition of TCRE reveals that oceanic heat uptake is compensating for some, but not all, of the pathway dependence induced by the carbon cycle response. The time dependency clearly arises due to lagged carbon sequestration processes in the oceans and specifically on land, viz., ecological succession, land-cover, and demographic changes, etc., which are still poorly represented in most ESMs. This implies a temporally evolving state of the carbon system, but one which surprisingly apportions carbon into land and ocean sinks in a manner that is independent of the emission pathway. Therefore, even though TCRE differs for different pathways with the same total emissions, it is roughly constant when related to the state of the carbon system, i. e., the amount of carbon stored in surface sinks. While this study does not fundamentally invalidate the established TCRE concept, it does uncover additional uncertainties tied to the carbon system state. Thus, efforts to better understand this state dependency with observations and refined models are needed to accurately project the impact of future emissions.