Deep learning approaches for differentiating thyroid nodules with calcification: a two-center study
Chen Chen,
Yuanzhen Liu,
Jincao Yao,
Kai Wang,
Maoliang Zhang,
Fang Shi,
Yuan Tian,
Lu Gao,
Yajun Ying,
Qianmeng Pan,
Hui Wang,
Jinxin Wu,
Xiaoqing Qi,
Yifan Wang,
Dong Xu
Affiliations
Chen Chen
Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences
Yuanzhen Liu
Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences
Jincao Yao
Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences
Kai Wang
Department of Ultrasound, The Affiliated Dongyang Hospital of Wenzhou Medical University
Maoliang Zhang
Department of Ultrasound, The Affiliated Dongyang Hospital of Wenzhou Medical University
Fang Shi
Capacity Building and Continuing Education Center of National Health Commission
Yuan Tian
Capacity Building and Continuing Education Center of National Health Commission
Lu Gao
Capacity Building and Continuing Education Center of National Health Commission
Yajun Ying
Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital)
Qianmeng Pan
Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital)
Hui Wang
Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital)
Jinxin Wu
Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital)
Xiaoqing Qi
Department of Ultrasound, Hangzhou Ninth People’s Hospital
Yifan Wang
Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences
Dong Xu
Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences
Abstract Background Calcification is a common phenomenon in both benign and malignant thyroid nodules. However, the clinical significance of calcification remains unclear. Therefore, we explored a more objective method for distinguishing between benign and malignant thyroid calcified nodules. Methods This retrospective study, conducted at two centers, involved a total of 631 thyroid nodules, all of which were pathologically confirmed. Ultrasound image sets were employed for analysis. The primary evaluation index was the area under the receiver-operator characteristic curve (AUROC). We compared the diagnostic performance of deep learning (DL) methods with that of radiologists and determined whether DL could enhance the diagnostic capabilities of radiologists. Results The Xception classification model exhibited the highest performance, achieving an AUROC of up to 0.970, followed by the DenseNet169 model, which attained an AUROC of up to 0.959. Notably, both DL models outperformed radiologists (P < 0.05). The success of the Xception model can be attributed to its incorporation of deep separable convolution, which effectively reduces the model’s parameter count. This feature enables the model to capture features more effectively during the feature extraction process, resulting in superior performance, particularly when dealing with limited data. Conclusions This study conclusively demonstrated that DL outperformed radiologists in differentiating between benign and malignant calcified thyroid nodules. Additionally, the diagnostic capabilities of radiologists could be enhanced with the aid of DL.