Phonon dispersion curves in Cr2AlC single-crystals

Materials Research Letters. 2018;6(7):378-383 DOI 10.1080/21663831.2018.1463298

 

Journal Homepage

Journal Title: Materials Research Letters

ISSN: 2166-3831 (Online)

Publisher: Taylor & Francis Group

LCC Subject Category: Technology: Electrical engineering. Electronics. Nuclear engineering: Materials of engineering and construction. Mechanics of materials

Country of publisher: United Kingdom

Language of fulltext: English

Full-text formats available: PDF, HTML

 

AUTHORS

A. Champagne (Université catholique de Louvain)
F. Bourdarot (Université Grenoble Alpes et Commissariat à l’Energie Atomique, INAC)
P. Bourges (CEA-CNRS, Université Paris-Saclay, CEA Saclay)
P. Piekarz (Polish Academy of Sciences)
D. Pinek (Université Grenoble-Alpes, CNRS, Grenoble INP, LMGP)
I. Gélard (Université Grenoble-Alpes, CNRS, Grenoble INP, LMGP)
J.-C. Charlier (Université catholique de Louvain)
T. Ouisse (Université Grenoble-Alpes, CNRS, Grenoble INP, LMGP)

EDITORIAL INFORMATION

Blind peer review

Editorial Board

Instructions for authors

Time From Submission to Publication: 10 weeks

 

Abstract | Full Text

Neutron inelastic scattering is used for the first time to measure phonon dispersion branches in Cr2AlC MAX phase single crystals with appreciable size. Phonon spectra are also calculated within the Density Functional Perturbation Theory (DFPT) framework and exhibit a very good match with experimental data, including high energy carbon-related optical branches. Both experiments and ab initio simulations confirm the existence of a substantial phonon gap and discard the presence of any softening mode or possible magnetic effect. IMPACT STATEMENT We synthesized Cr2AlC single-crystalline platelets with areas over 10 cm2. This breakthrough in materials synthesis was a prerequisite for measuring inelastic neutron scattering and phonon anisotropies.