Genome Biology (Nov 2022)

Lineage abundance estimation for SARS-CoV-2 in wastewater using transcriptome quantification techniques

  • Jasmijn A. Baaijens,
  • Alessandro Zulli,
  • Isabel M. Ott,
  • Ioanna Nika,
  • Mart J. van der Lugt,
  • Mary E. Petrone,
  • Tara Alpert,
  • Joseph R. Fauver,
  • Chaney C. Kalinich,
  • Chantal B. F. Vogels,
  • Mallery I. Breban,
  • Claire Duvallet,
  • Kyle A. McElroy,
  • Newsha Ghaeli,
  • Maxim Imakaev,
  • Malaika F. Mckenzie-Bennett,
  • Keith Robison,
  • Alex Plocik,
  • Rebecca Schilling,
  • Martha Pierson,
  • Rebecca Littlefield,
  • Michelle L. Spencer,
  • Birgitte B. Simen,
  • Yale SARS-CoV-2 Genomic Surveillance Initiative,
  • William P. Hanage,
  • Nathan D. Grubaugh,
  • Jordan Peccia,
  • Michael Baym

DOI
https://doi.org/10.1186/s13059-022-02805-9
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 20

Abstract

Read online

Abstract Effectively monitoring the spread of SARS-CoV-2 mutants is essential to efforts to counter the ongoing pandemic. Predicting lineage abundance from wastewater, however, is technically challenging. We show that by sequencing SARS-CoV-2 RNA in wastewater and applying algorithms initially used for transcriptome quantification, we can estimate lineage abundance in wastewater samples. We find high variability in signal among individual samples, but the overall trends match those observed from sequencing clinical samples. Thus, while clinical sequencing remains a more sensitive technique for population surveillance, wastewater sequencing can be used to monitor trends in mutant prevalence in situations where clinical sequencing is unavailable.