Scientific Reports (Jan 2025)
Catalytic efficiency of GO-PANI nanocomposite in the synthesis of N-Aryl-1,4-Dihydropyridine and hydroquinoline derivatives
Abstract
Abstract In this research, graphene oxide-polyaniline (GO-PANI) nanocomposite was successfully synthesized and its catalytic performance was evaluated for the synthesis of N-aryl-1,4-dihydropyridine (1,4-DHP) and hydroquinoline derivatives. The GO nanosheets were prepared using the Hummers’ method, and in-situ polymerization of aniline was conducted with ammonium persulfate (APS) serving as the polymerization initiator. The synthesized nanocomposite demonstrated notable efficiency, achieving yields of 80–94% for 1,4-DHP derivatives and 84–96% for hydroquinoline derivatives. The GO-PANI nanocomposite was thoroughly characterized by various techniques, including Fourier Transforms Infrared spectroscopy (FT-IR), Field Emission Scanning Electron Microscopy (FE-SEM), X-ray Diffraction analysis (XRD), Thermogravimetric analysis (TGA), and Energy Dispersive X-ray spectroscopy (EDS), all of which confirmed the successful synthesis of the nanocomposite. Furthermore, after ten cycles of reusability testing, the nanocomposite retained its high catalytic performance with no significant degradation. This findings indicate that the GO-PANI nanocomposite is a promising non-metal catalyst for the synthesis of N-aryl-1,4-dihydropyridine and hydroquinoline derivatives.
Keywords