Remote Sensing (Aug 2020)

Remote Sensing Estimation of Regional NO<sub>2</sub> via Space-Time Neural Networks

  • Tongwen Li,
  • Yuan Wang,
  • Qiangqiang Yuan

DOI
https://doi.org/10.3390/rs12162514
Journal volume & issue
Vol. 12, no. 16
p. 2514

Abstract

Read online

Nitrogen dioxide (NO2) is an essential air pollutant related to adverse health effects. A space-time neural network model is developed for the estimation of ground-level NO2 in this study by integrating ground NO2 station measurements, satellite NO2 products, simulation data, and other auxiliary data. Specifically, a geographically and temporally weighted generalized regression neural network (GTW-GRNN) model is used with the advantage to consider the spatiotemporal variations of the relationship between NO2 and influencing factors in a nonlinear neural network framework. The case study across the Wuhan urban agglomeration (WUA), China, indicates that the GTW-GRNN model outperforms the widely used geographically and temporally weighted regression (GTWR), with the site-based cross-validation R2 value increasing by 0.08 (from 0.61 to 0.69). Besides, the comparison between the GTW-GRNN and original global GRNN models shows that considering the spatiotemporal variations in GRNN modeling can boost estimation accuracy. All these results demonstrate that the GTW-GRNN based NO2 estimation framework will be of great use for remote sensing of ground-level NO2 concentrations.

Keywords