Over the past decades, 2(5H)-furanone derivatives have been extensively studied because of their promising ability to prevent the biofilm formation by various pathogenic bacteria. Here, we report the synthesis of a series of optically active sulfur-containing 2(5H)-furanone derivatives and characterize their biological activity. Novel thioethers were obtained by an interaction of stereochemically pure 5-(l)-menthyloxy- or 5-(l)-bornyloxy-2(5H)-furanones with aromatic thiols under basic conditions. Subsequent thioethers oxidation by an excess of hydrogen peroxide in acetic acid resulted in the formation of the corresponding chiral 2(5H)-furanone sulfones. The structure of synthesized compounds was confirmed by IR and NMR spectroscopy, HRMS, and single crystal X-ray diffraction. The leading compound, 26, possessing the sulfonyl group and l-borneol moiety, exhibited the prominent activity against Staphylococcus aureus and Bacillus subtilis with MICs of 8 μg/mL. Furthermore, at concentrations of 0.4–0.5 μg/mL, the sulfone 26 increased two-fold the efficacy of aminoglycosides gentamicin and amikacin against S. aureus. The treatment of the model-infected skin wound in the rat with a combination of gentamicin and sulfone 26 speeded up the bacterial decontamination and improved the healing of the wound. The presented results provide valuable new insights into the chemistry of 2(5H)-furanone derivatives and associated biological activities.