PLoS ONE (Jan 2015)

Distinct Patterns of Wnt3a and Wnt5a Signaling Pathway in the Lung from Rats with Endotoxic Shock.

  • Hiong-Ping Hii,
  • Mei-Hui Liao,
  • Shiu-Jen Chen,
  • Chin-Chen Wu,
  • Chih-Chin Shih

DOI
https://doi.org/10.1371/journal.pone.0134492
Journal volume & issue
Vol. 10, no. 7
p. e0134492

Abstract

Read online

Septic shock is a syndrome with severe hypotension and multiple organ dysfunction caused by an imbalance between pro-inflammatory and anti-inflammatory response. The most common risk factor of acute lung injury is severe sepsis. Patients with sepsis-related acute respiratory distress syndrome have higher mortality. Recent studies reveal regulatory roles of Wnt3a and Wnt5a signaling in inflammatory processes. Wnt3a signaling has been implicated in anti-inflammatory effects, whereas Wnt5a signaling has been postulated to have pro-inflammatory properties. However, the balance between Wnt3a and Wnt5a signaling pathway in the lung of rats with endotoxic shock has not been determined. Thus, we investigated the major components of Wnt3a and Wnt5a signaling pathway in the lung of endotoxemic rats. Male Wistar rats were intravenously infused with saline or lipopolysaccharide (LPS, 10 mg/kg). The changes of hemodynamics, biochemical variables, and arterial blood gas were examined during the experimental period. At 6 h after saline or LPS, animals were sacrificed, and lungs were obtained for analyzing superoxide production, water accumulation, histologic assessment, and protein expressions of Wnt3a and Wnt5a signaling pathway. Animals that received LPS showed circulatory failure, multiple organ dysfunction, metabolic acidosis, hyperventilation, lung edema, and high mortality. The lung from rats with endotoxic shock exhibited significant decreases in the levels of Wnt3a, Fzd1, Dsh1, phosphorylated GSK-3β at Ser9, and β-catenin. In contrast, the expressions of Wnt5a, Fzd5, and CaMKII were up-regulated in the lung of endotoxemic rats. These findings indicate the major components of Wnt3a and Wnt5a signaling in the lung are disturbed under endotoxic insult.