Membranes (Sep 2021)

Effect of Direct Fluorination on the Transport Properties and Swelling of Polymeric Materials: A Review

  • Nikolay A. Belov,
  • Dmitrii S. Pashkevich,
  • Alexandre Yu Alentiev,
  • Alain Tressaud

DOI
https://doi.org/10.3390/membranes11090713
Journal volume & issue
Vol. 11, no. 9
p. 713

Abstract

Read online

Fluorine-containing polymers occupy a peculiar niche among conventional polymers due to the unique combination of physicochemical properties. Direct surface fluorination of the polymeric materials is one of the approaches for the introduction of fluorine into the chemical structure that allows one to implement advantages of fluorinated polymers in a thin layer. Current review considers the influence of the surface interaction of the polymeric materials and membranes with elemental fluorine on gas, vapor and liquid transport as well as swelling and related phenomena. The increase in direct fluorination duration and concentration of fluorine in the fluorination mixture is shown to result mostly in a reduction of all penetrants permeability to a different extent, whereas selectivity of the selected gas pairs (He-H2, H2-CH4, He-CH4, CO2-CH4, O2-N2, etc.) increases. Separation parameters for the treated polymeric films approach Robeson’s upper bounds or overcome them. The most promising results were obtained for highly permeable polymer, polytrimethylsilylpropyne (PTMSP). The surface fluorination of rubbers in printing equipment leads to an improved chemical resistance of the materials towards organic solvents, moisturizing solutions and reduce diffusion of plasticizers, photosensitizers and other components of the polymeric blends. The direct fluorination technique can be also considered one of the approaches of fabrication of fuel cell membranes from non-fluorinated polymeric precursors that improves their methanol permeability, proton conductivity and oxidative stability.

Keywords