Phosphate Capture Enhancement Using Designed Iron Oxide-Based Nanostructures
Paula Duenas Ramirez,
Chaedong Lee,
Rebecca Fedderwitz,
Antonia R. Clavijo,
Débora P. P. Barbosa,
Maxime Julliot,
Joana Vaz-Ramos,
Dominique Begin,
Stéphane Le Calvé,
Ariane Zaloszyc,
Philippe Choquet,
Maria A. G. Soler,
Damien Mertz,
Peter Kofinas,
Yuanzhe Piao,
Sylvie Begin-Colin
Affiliations
Paula Duenas Ramirez
Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, University of Strasbourg, CNRS, 67034 Strasbourg, France
Chaedong Lee
Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-Si 16229, Gyeonggi-do, Republic of Korea
Rebecca Fedderwitz
Department of Chemical and Biomolecular Engineering, University of Maryland, 4418 Stadium Dr., College Park, MD 20740, USA
Antonia R. Clavijo
Institute of Physics, University of Brasilia, Brasilia 70910900, Brazil
Débora P. P. Barbosa
Institute of Physics, University of Brasilia, Brasilia 70910900, Brazil
Maxime Julliot
Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, University of Strasbourg, CNRS, 67034 Strasbourg, France
Joana Vaz-Ramos
Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, University of Strasbourg, CNRS, 67034 Strasbourg, France
Dominique Begin
Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), UMR-7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
Stéphane Le Calvé
Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), UMR-7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
Ariane Zaloszyc
Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), UMR-7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
Philippe Choquet
Laboratoire des Sciences de l’Ingénieur, de l’Informatique et de l’Imagerie (ICube)—CNRS/University of Strasbourg, UMR 7357 Preclinical Imaging Lab, Imaging Dpt, Hôpitaux Universitaires de Strasbourg, 67098 Strasbourg, France
Maria A. G. Soler
Institute of Physics, University of Brasilia, Brasilia 70910900, Brazil
Damien Mertz
Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, University of Strasbourg, CNRS, 67034 Strasbourg, France
Peter Kofinas
Department of Chemical and Biomolecular Engineering, University of Maryland, 4418 Stadium Dr., College Park, MD 20740, USA
Yuanzhe Piao
Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-Si 16229, Gyeonggi-do, Republic of Korea
Sylvie Begin-Colin
Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, University of Strasbourg, CNRS, 67034 Strasbourg, France
Phosphates in high concentrations are harmful pollutants for the environment, and new and cheap solutions are currently needed for phosphate removal from polluted liquid media. Iron oxide nanoparticles show a promising capacity for removing phosphates from polluted media and can be easily separated from polluted media under an external magnetic field. However, they have to display a high surface area allowing high removal pollutant capacity while preserving their magnetic properties. In that context, the reproducible synthesis of magnetic iron oxide raspberry-shaped nanostructures (RSNs) by a modified polyol solvothermal method has been optimized, and the conditions to dope the latter with cobalt, zinc, and aluminum to improve the phosphate adsorption have been determined. These RSNs consist of oriented aggregates of iron oxide nanocrystals, providing a very high saturation magnetization and a superparamagnetic behavior that favor colloidal stability. Finally, the adsorption of phosphates as a function of pH, time, and phosphate concentration has been studied. The undoped and especially aluminum-doped RSNs were demonstrated to be very effective phosphate adsorbents, and they can be extracted from the media by applying a magnet.