PLoS ONE (Jan 2012)

Plasticity of the injured human spinal cord: insights revealed by spinal cord functional MRI.

  • David W Cadotte,
  • Rachael Bosma,
  • David Mikulis,
  • Natalia Nugaeva,
  • Karen Smith,
  • Ronald Pokrupa,
  • Omar Islam,
  • Patrick W Stroman,
  • Michael G Fehlings

DOI
https://doi.org/10.1371/journal.pone.0045560
Journal volume & issue
Vol. 7, no. 9
p. e45560

Abstract

Read online

IntroductionWhile numerous studies have documented evidence for plasticity of the human brain there is little evidence that the human spinal cord can change after injury. Here, we employ a novel spinal fMRI design where we stimulate normal and abnormal sensory dermatomes in persons with traumatic spinal cord injury and perform a connectivity analysis to understand how spinal networks process information.MethodsSpinal fMRI data was collected at 3 Tesla at two institutions from 38 individuals using the standard SEEP functional MR imaging techniques. Thermal stimulation was applied to four dermatomes in an interleaved timing pattern during each fMRI acquisition. SCI patients were stimulated in dermatomes both above (normal sensation) and below the level of their injury. Sub-group analysis was performed on healthy controls (n = 20), complete SCI (n = 3), incomplete SCI (n = 9) and SCI patients who recovered full function (n = 6).ResultsPatients with chronic incomplete SCI, when stimulated in a dermatome of normal sensation, showed an increased number of active voxels relative to controls (p = 0.025). There was an inverse relationship between the degree of sensory impairment and the number of active voxels in the region of the spinal cord corresponding to that dermatome of abnormal sensation (R(2) = 0.93, pConclusionsIn this work we demonstrate the use of spinal fMRI to investigate changes in spinal processing of somatosensory information in the human spinal cord. We provide evidence for plasticity of the human spinal cord after traumatic injury based on an increase in the average number of active voxels in dermatomes of normal sensation in chronic SCI patients and an increased number of intraspinal connections in incomplete SCI patients relative to healthy controls.